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ABSTRACT
For many years electronic design and test communities were disconnected entities.  This paper presents a process
that links design with test during the design phase.  The process utilizes an automatic control system strategy to
automate the design of test patterns for diagnostics.  A basic control system includes a controller, plant and
sensors.  The target for this controller is the weighted sum of percent detection and the number of isolated faults.
The components of the control system include a timed test proposer, Genetic Algorithm (test generator) and an
unsupervised neural network called Fuzzy Adaptive Resonance Theory (FuzzyART) used as a “Virtual Sensor”.
The system being evaluated is simulated using design software (i.e., Verilog HDL or VHDL - digital and SPICE -
analog).  The paper will describe the architecture of the control system and will address details of the selection
algorithms for the Genetic Algorithm.  The paper will also describe the FuzzyART, why it was used and some key
advantages.  Finally, the paper includes some results obtained for three different circuits (two digital and one
analog) evaluated with this process.

Background
This paper describes a system that was envisioned to help couple the design and test efforts during
the development of electronic systems.  Test and diagnostic capability is typically developed after
the design is complete, often by a different organization.  In most cases, diagnosis of the Unit
Under Test  (UUT)  is extremely difficult because the optimal test sites are not available at the
edge connector. Developing the test and diagnostics during the design cycle could significantly
improve diagnostic accuracy (reduce false pulls), reduce test time and considerably reduce costs
both in development and maintenance. The intent is to increase the availability of the system in the
field while reducing life-cycle costs.

In the past, the method of generating a test program with its associated diagnostics relied on the
use of a fault simulator by a test engineer.  The engineer used the fault simulator to model the
circuit and manually add test patterns to a sequence called the input pattern set (IPS). During the
design of the IPS, the engineer used a fault simulator recursively try new patterns appended to the
previous patterns.  The fault simulator assessed the fault coverage based on detection and a
statistical evaluation of occurrence to interpret isolation. Ultimately, the fault simulator provides,
when the test engineer is complete, a portion of the Test Program Set (TPS), which includes the
IPS, the diagnostic information (fault dictionary), and some of the control software for the
Automatic Test Equipment (ATE). This method currently requires a significant amount of a test
engineer's time for a UUT of moderate complexity.

Obviously, the TPS is not presently developed during the design phase of the system due to time
manpower, and cost constraints.  The software required for fault simulation is not the same as that
required for design and it is costly.  If the designer builds the fault dictionary and test sequence
during the design phase, improvements to fault detection and isolation can be made by literally



designing the test points that will be provided as output pins at the edge connector.  Presently, the
designer makes an “educated guess” as to which internal states require access at the edge
connector based on a priori knowledge of the circuits and systems.

For design engineers to become involved with test engineering, the process that generates test
sequences must be automated, reliable and predictable. The automated tools which synthesize the
tests must use available standard design simulation languages (e.g., Verilog HDL and VHDL for
digital circuits).  The last crucial requirement is that the time to build a good test must be
reasonable and fit within the current design cycle.

System Identification-Intelligent Control
The desire is to treat the circuit as a black box (see Figure 1) considering only input and outputs
obtained at the edge connectors.  This is how tests are implemented by ATE, and this is also how
the interpretation of the results is accomplished.  A test sequence must be generated and supplied
to the UUT.  Once this is accomplished, the output must be evaluated to identify the actual
system.  System Identification techniques apply this same philosophy.

The basic objective of system identification is to form a mathematical equivalent to an unknown
physical system. There are four requirements for System Identification to occur.  They are: define
the general physical properties of the internal structures, sufficiently excite those internal
structures, measure the response with proper sensors, and provide adjustments to the equivalent
system (model) to match performance.  One can imagine a set of springs coupled together as in
Figure 1.  The object of this experiment would be to find an input or set of inputs that would
cause each spring to vibrate at its natural frequency which would allow for reconstruction of the
spring constants by exciting each spring at their own resonant frequency.  Ultimately, the
equivalent system would develop over time so that each spring would be clearly identified.
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Figure. 1: Example of system identification.

The example above simplifies the reality of the true physics of this procedure, but it provides a
clear understanding of the intent.  Consider the distance moved by each spring to be a
displacement defined as an internal state.  The idea is to measure the state or motion at the output
and mathematically reconstruct the internal states of the springs. In electrical circuits, the states
typically are voltage, current (continuous or discrete).

It is not a trivial task to apply directly the concept of system identification to develop diagnostics.
Typically, the matrices that develop using the standard approach become intolerably large and
prohibit the use of this methodology.  However, altering the internal states one at a time from its
nominal value and representing this situation as a separate model essentially serves the same



purpose.  Figure 2 introduces a system identification procedure that is designed to identify the
faults, which are analogous to the states of the springs.
The block diagram of Figure 2 depicts the process of this Automatic Test Generator (ATG)
system. This ATG is composed of four basic functional elements: Controlled Test Proposer,

Simulator, Unsupervised Neural Network Classifier (NNC) and the Genetic Algorithm Test
Generator.  The Automatic Model Builder (AMB) consists of three basic structures, Netlist

Generator (NG), Component Model Library (CML), and fault specifications.  The AMB converts
computer-aided design (CAD) or schematic capture data into a fully functional circuit model.
The AMB utilizes the models in the Component Model Library (CML) and a netlist to assemble
the software component models as they are wired together in hardware.  Once the functional
circuit model is validated, single faults are systematically inserted into the model to simulate
failure conditions.  The ATG system shown in Figure 2 is intended to minimize the number of
input patterns (test vectors) that are required in order to achieve maximum fault detection and
isolation.

Fault Models
A complete description of the fault models for both digital and analog circuits can be found in the
literature (Lynch, 1997).  A brief overview is provided in this section.

Fault Models (Digital).  Presently, the type of faults that are used as models are of three types
which are depicted in Figure 3.  The first is each network of wires tied together by a common
voltage source is fixed at a value equivalent to ground or 0.  The second model is all networks
wired together by a common voltage source is fixed at a value equivalent to rail voltage
(dependent on technology) considered stuck at 1.  The third type of fault model is a fan in
terminal is separated from the voltage reference.  This is considered a value of 1 as well.  Each of
these fault types is considered one at a time.  This is to essentially highlight the voltage path so the
test can be evaluated against detection and isolation of that fault (observability).
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Figure 2.  Automatic Test Generator and Automatic Model Builder



A complete description of fault model construction for digital circuits in the Verilog HDL is
described in the literature (Lynch and Singer, 1997).

Fault Models (Analog).  For analog circuits, the faults that are modeled are: shorted pins,
opened pins, resistors opened, capacitors opened and shorted, diodes shorted or opened, and the
op-amp outputs stuck at positive rail or negative rail   These faults are consistent with the faults
to be detected on the Consolidated Automated Support System (CASS) as specified in the
General Acceptance Test Procedures (GATP) for Operational Test Program Sets (OTPS), which
is part of the CASS Red Team Generic Procurement Package.   It is anticipated that all of the
component failure modes defined in the GATP could be accommodated.  In general, any fault
which can be modeled can be processed by the system.

Simulator
A Verilog simulator, such as SILOS® III, (or SPICE, for analog circuits) exercises each of the
circuit models (good and faulty) once for each individual test in the population during each
iteration of the Genetic Algorithm (GA).  A simulator-specific batch file must be created which
invokes each circuit model simulation in turn.  Each circuit uses the same IPS proposed by the
GA and outputs responses to a different output file. After the execution of each individual test in
the population, the output responses are stored until the complete set of individual tests in the
population has been processed.  The response data is then used by the Neural Network Classifier
to perform its function.  The system has developed tests using Simucad's SILOS® III, commonly-
used, commercial off the shelf Verilog simulator.

NOTATION.  The notation for the mathematics used by the system is as follows:
Inputs
                         Test1

       Test2

Population =  Test3

          .
 Tests

Testx = [Px1, Px2 . . ., Pxj]
Pxj = [I1, I2, I3, . . .Ip]

where
s = number of tests sequences in the population;
x = 1, 2, ..., s;
j = 1, 2, 3, . . . , number of test patterns;
and
p = number of inputs to the circuit.
∴(Population is an s by n*p matrix)

Prior to each test sequence an initialization sequence is inserted in the circuit simulations to
initialize the system.
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Outputs
O11, O12, O13, ..., O1y

O21, O22, O23, ..., O2y

Output =   O31, O32, O33, ..., O3y

matrix .
.
.

Om1, Om2, Om3, ..., Omy

Outputm = [Om1, Om2, Om3, ..., Omy]

where
m = 1, 2, 3, . . ., number of models,
with m=1 representing the good model response, m=2
representing the first fault model response, etc.
and y = input pattern number.

Omy is the response of the model m to input pattern y.

One additional conversion implemented in this data structuring for the digital circuit was to
convert the output from a binary string to a set of integers using the following: O =[...0 1 0] =
[..0*2^2+1*2^1+0*2^0].   This operation was done to reduce the amount of data, increasing the
speed of analysis.

Unsupervised Pattern Classifier
The main feature of the classifier shown in Figure 2 is to generate the fitness function.  The
algorithm implemented in this process was developed by Steven Grossberg and Gail Carpenter at
Boston University.  The algorithm essentially uses the output matrix as weights with scalar
multiples that define the sensitivity to pattern variations.  As each row is multiplied by the rows of
the weight matrix, a vector is formed, labeled T that contains results for this multiplication. The
entry with the maximum value in this vector indicates the matched patterns.

The process isolates different patterns and groups them to form clusters or classes.  For each test,
a maximum number of clusters are formed, which indicates the number of fault classes isolated.
The numbers of rows that are listed as class 1 (the good circuit class) are used to determine the
percentage of fault detection.  Finally, the weighted sum of both percent detection and total
classes formed (number of faults isolated) becomes proportional to the fitness of each individual
test.

Description Of FuzzyART. Fuzzy ART is a real number classifier.  Because of this, it will be able
to process digital, analog, and mixed signal circuits.  FuzzyART uses fuzzy logic calculations to
determine the relationship of memorized images to the image presented for recognition.  An
overview is provided in Figure 4.  The weighted vectors stored in memory represent the patterns
to be recognized.  The intersection of patterns form a region of uncertainty that presents difficulty
for the standard classifiers.  This region of uncertainty, for FuzzyART can actually work to its
advantage. Each pattern to be classified is provided as an input. The neural network then
processes the signal and compares it to stored weights.  If there is a match to one of the rows of
the weighting matrix, the process stops.  However, if there is no match the weight matrix is
updated by wji=ρ*I (I is the pattern to be classified modified with its complement) and used for
future classifications.  This process is repeated until the output matrix (used as input to the neural
network) is exhausted.  The scalar ρ is used to increase or decrease the resolution of the classifier
making it ideal for analog and digital type systems. A complete description of both fuzzy logic and
FuzzyART can be found in (Kosko, 1991) and (Grossberg, 1992), respectively.



Fuzzy Adaptive Resonance Theory
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Figure 4.  Overview of FuzzyART

Two important points must be made on behalf of the benefits of FuzzyART for this process. Since
FuzzyART is inherently unsupervised, it can identify patterns that are different thus separating the
response of fault models into separate classes.  The classifier which is used to generate tests off-
line can be also used during testing to update the list of isolated faults that are diagnosed in the
field.  This is considered to be a real time machine learning process.

The second benefit is in reference to a particular challenge that analog circuits present.  The
testing of analog circuits has a region of uncertainty because of tolerances of components and the
instruments evaluating the response.  Since FuzzyART takes advantage of fuzzy set theory, it
adds the benefits of improving the analysis of signals that are contained in the uncertainty
boundaries.  One way to take advantage of this network is to reduce the parameter ρ (increasing
the size of the membership function formed by the patterns to be classified (Grossberg, 1992) so
that only circuits within the tolerance limits are defined as acceptable.  Once the parameter ρ is
determined, the process is activated with the reduced value of ρ and a test is formed to isolate
features that are characteristic of a faulty system.  This concept can only be implemented with a
mathematical structure that evaluates the region bounded within intersections of classes.  Figure 5
illustrates the concept of using the region of uncertainty to extract features that are slightly
different from the good circuit response making it possible to identify parametric faults.
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Figure 5. Uncertainty Regions



Test Proposition And Genetic Algorithm Test Generator
In any optimization process, potential solutions to the problem must be created and the
performance for each attempted solution must be obtained and compared. A new set of potential
solutions must be assembled and evaluated.  This process must be repeated until the solution
reaches the desired goals.

The Genetic Algorithm (GA) works in a manner described above.  The GA is based on Charles
Darwin's Evolutionary Theory of Natural Selection.  This algorithm was first formally modeled
mathematically by John Holland at the University of Michigan (Goldberg, 1989).
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Figure 6.  Block diagram of one loop of the GA

Applied to this ATG process, the GA process shown in Figure 6 generates new tests based on the
old tests and their measured performance. The steps are; generate a population of tests either
randomly or by a priori methods (Backtrace algorithm or verification test), select tests from the
population, and evaluate each individual to determine its worth for selection.  Selection is based
on a statistical criteria which is modeled as either a "tournament" or a voting strategy.  Once two
tests have been selected, a crossover operation can be applied to create a new set of patterns.

Crossover.  The method of generating a new test is to split each selected individual into two or
more segments.  Two new tests are formed by recombining (crossover) the front and back of each
test where the front segment from test 1 becomes the front of test 2. The basic concept of the
genetic algorithm is that, during crossover each test contributes a portion that had benefit to the
fitness. By recombining components of the original test, new tests are formed that improve
performance over several generations. Figure 7 illustrates an example of crossover. The actual
system implemented a two point crossover.

Old Test1  = [a b c d e f g h i j k l] Old  Test2= [m n o p q r s t u v w x]
New Test1= [ a b c d e f s t u v w x] New Test2= [ m n o p q r g h i j k l]
Figure 7. Example of crossover to form new tests.

Mutation.  In addition to test generation by crossover,  mutations to individual bits in each new
test are performed by changing a small number of input values (typically less than 5%) from 0 to 1
or the reverse in a probabilistic fashion.  This is necessary to sufficiently excite internal structures
and maintain diversity.
Selection. The statistics defining the selection process are based on the probability of survival.
Survival is determined by what has been termed "fitness function."  The fitness function is the



workhorse that the GA requires for optimization.  Fitness is the feedback that the process being
optimized provides, via some knowledge of relative closeness to the desired goal.  It is this
feature that makes the GA distinctively different from other optimization schemes.  The value of
fitness does not necessarily require dependence on the models mathematically.  It only requires
performance of the system relative to the goal.

The mathematics behind the GA essentially determines, via the tournament selection process,
those tests that will be selected for reproduction (survive) and those tests that will not be selected
(die). This process is probabilistically based on the fitness function and ultimately pushes the
average fitness of the groups of tests toward the detection/isolation goals from generation to
generation by eliminating those tests that perform poorly.

The work described in this paper implemented two different methods of selection.  The first was
based on a tournament. Two individual tests were randomly selected.  The values of their fitness
were compared and the individual that won was selected for crossover based on a scalar defined
by the user (known as probability of survival). The probability of survival (user defined parameter
between 0 and 1) and is typically set to 0.75.  A random number was generated between 0 and 1.
If the random number was less than the  probability of survival, the individual with the higher
fitness was selected.  The individual with the lower fitness was selected if the random number was
greater than probability of survival.  In other words,  75% of the time the individual with the
better performance was selected and 25% of the time the other individual was selected.

The second selection methodology was based on the performance of each test.  It is called
Expected Value Model developed by Kenneth De Jong.  A random number was generated
between 0 and 1. Each individual was represented based on their fitness and compared with the
mean of the entire population.  Consider three individuals in the population:  the first individual
(I1) has a fitness of 3, the second individual (I2) has a fitness of 6, and the third individual (I3) has
a fitness of 9. The first individual with fitness 3 had a 16.7% chance of being selected. The
individual with fitness of 6 had a 33.3 % chance of being selected. The last individual had a 50 %
chance of being selected.  In general, the probability that a test is selected is given by Pi=fi/(∑fi);
where fi = fitness for each individual test in the current population.  A complete evaluation of the
construction and mathematics of the genetic algorithm can be found in (Goldberg, 1989).

Figure 8: Selection based on Expected Value Model

Selective Breeding.  In addition to the selection algorithms described above, a separate selection
algorithm, designed to enhance the performance of the Genetic Algorithm, was developed.  A
new population was formed using the best performer from a previous number of generations.
This improved overall performance and also helped reduce the required size of the population.
Figure 8 illustrates an example of this selective breeding selection.
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Results
In order to assess the performance of this approach, the process was applied to three separate
circuits.  The first circuit was the D-type Non-inverting Data Latch (DNDL) of Figure 9. The
second circuit was a moderately complex decoder (used in military aircraft) including flip-flops,
counters, shift registers among other time dependent devices.  The third circuit was the servo
controller for a rate gyro (used in military aircraft) shown in Figure 9. All three circuits have been
modeled using different simulation engines. The first was a “home grown” simulator created in the
modeling software language, “Matlab,” and the second was either a commercial simulator
developed by Simucad called, Silos III, for digital circuits or SPICE for analog circuits.

The results obtained for all three circuits were compared with existing analytical tools for fault
analysis. The DNDL results indicated that the system achieved 100% detection and maximum
available isolation (19 fault class equivalents) with 19 test patterns, compared to the back trace
algorithm which achieved 100% detection and unknown isolation with 29 test patterns. The
analog experiment achieved 100% detection with few generations.  Isolation has only reached   60
% of the faults.  This situation is still under investigation.  Lastly, the decoder circuit which has a
TPS developed manually reached the numbers achieved with the TPS with less than 100 test
patterns as compared with 342 patterns in the TPS. At the time this paper was written, several
experiments have been exercised to identify an optimized system.
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In addition, a hardware model of the DNDL circuit was built using discrete gate level components
and faults were inserted at each pin. The Neural Network Classifier that was trained by the
process outlined in this paper was built in an acquisition/control software system known as
Labview and used for the diagnostics classifier.  A similar Labview experiment is planned for the
other two circuit models for early April 1998.
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